লেখচিত্রে সমীকরণের সমাধান (৭.৬)

সপ্তম শ্রেণি (মাধ্যমিক) - গণিত সরল সমীকরণ | - | NCTB BOOK
57
57

লেখচিত্রের সাহায্যে সহজেই সমীকরণের সমাধান বের করা যায়। মনে করি, 2x - 5 = 0 সমীকরণটি সমাধান করতে হবে। সমীকরণের বামপক্ষ 2x - 5 রাশিতে x-এর বিভিন্ন মান বসালে রাশিটির বিভিন্ন মান পাওয়া যায়। লেখচিত্রে প্রতিটি X কে ভুজ এবং রাশিটির মানকে কোটি ধরে একটি করে বিন্দু পাওয়া যাবে। বিন্দুগুলো যোগ করে একটি সরলরেখা অঙ্কিত হবে। সরলরেখাটি যে বিন্দুতে x অক্ষকে ছেদ করে, সেই বিন্দুর ভুজই নির্ণেয় সমাধান। কেননা, x-এর এই মানের জন্য রাশিটির মান 0 হয়, যা সমীকরণের ডানপক্ষের মানের সমান হয়। এ ক্ষেত্রে সমীকরণটির সমাধান x=52

উদাহরণ ২। 3x - 6 = 0 সমাধান কর এবং লেখচিত্রে সমাধান প্রদর্শন কর।

সমাধান: 3x - 6 = 0

বা, 3x = 6 [পক্ষান্তর করে]

বা, 3x3=63[উভয়পক্ষকে 3 দ্বারা ভাগ করে]

বা, x = 2

∴ সমাধান: x = 2

লেখচিত্র অঙ্কন: প্রদত্ত সমীকরণ 3x-6=0

x এর কয়েকটি মান নিয়ে 3x - 6 এর অনুরূপ মান বের করি এবং নিচের ছকটি তৈরি করি:

x

3x-6

(x, 3x-6)

2

0

(2,0)

5

9

(5,9)

6

12

(6,12)

লেখচিত্র অঙ্কনের জন্য তিনটি বিন্দু (2,0), (5,9) ও (6,12) নেওয়া হলো।

মনে করি, পরস্পর লম্ব রেখা XOX' ও YOY' যথাক্রমে x-অক্ষ ও y-অক্ষ এবং O মূলবিন্দু।

ছক কাগজে উভয় অক্ষে ক্ষুদ্রতম বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্যকে একক ধরে (2,0), (5,9), (6,12) বিন্দুগুলো স্থাপন করি। তারপর বিন্দুগুলো পরপর সংযোগ করি। লেখচিত্রে একটি সরলরেখা পাই। সরলরেখাটি x-অক্ষকে (2,0) বিন্দুতে ছেদ করে। বিন্দুটির ভুজ হলো 2। সুতরাং প্রদত্ত সমীকরণের সমাধান x = 2 ।

উদাহরণ ৩। লেখচিত্রের সাহায্যে সমাধান কর: 3x - 4 = - x + 4

সমাধান: প্রদত্ত সমীকরণ 3x - 4 = - x + 4

x এর কয়েকটি মান নিয়ে 3x - 4 এর অনুরূপ মান বের করি এবং পাশের ছক-১ তৈরি করি:

∴ 3x - 4 এর লেখের উপর তিনটি বিন্দু (0,-4), (2,2), (4,8) নিই।

x

3x - 4

(x, 3x - 4)

0

-4

(0,-4)

2

2

(2,2)

4

8

(4,8)

ছক-১

আবার, x এর কয়েকটি মান নিয়ে - x + 4 এর অনুরূপ মান বের করি এবং পাশের ছক-২ তৈরি করি:

∴ -x + 4 এর লেখের উপর তিনটি বিন্দু (0,4), (2,2), (4,0) নিই।

মনে করি, পরস্পর লম্ব রেখা XOX' ও YOY' যথাক্রমে x-অক্ষ ও ৮-অক্ষ এবং মূলবিন্দু। এখন, ছক-১ এ প্রাপ্ত (0,-4), (2,2), (4, 8) বিন্দু তিনটি স্থাপন করি এবং এদের পরপর সংযোগ করি।

x

-x + 4

(x, -x + 4)

0

4

(0,4)

2

2

(2,2)

4

0

(4,0)

ছক-২

(0,4), (2, 2), (4,0) বিন্দু তিনটি স্থাপন করি ও এদের পরপর সংযোগ করি। এক্ষেত্রেও লেখচিত্রে একটি সরলরেখা পাই।

লক্ষ করি, সরলরেখা দুটি পরস্পর (2,2) বিন্দুতে ছেদ করেছে। ছেদবিন্দুতে 3x-43-x+4 এর মান পরস্পর সমান। সুতরাং, প্রদত্ত সমীকরণের সমাধান হলো (2, 2) বিন্দুতে ভুজের মান, অর্থাৎ x = 2 ।

কাজ: নিচের সমীকরণগুলোর সমাধানের লেখচিত্র আঁক।

১। 2x-1=0 ২।3x+5=2

common.content_added_by
টপ রেটেড অ্যাপ

স্যাট অ্যাকাডেমী অ্যাপ

আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।

ভিডিও
লাইভ ক্লাস
এক্সাম
ডাউনলোড করুন
Promotion